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CONSIDERATIONS ON THE EFFECT OF WIND-TUNNEL WALLS ON OSCILLATING AIR FORCES
FOR TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW1

By HARRY L. RUNYAN and GABLES E. WATKINS

SUMMAR?

Tht3 report treats the eJect of wind-tunnd wah on the
osci?+k-ti~two-dimenkona.lairforctx in a compresdi.e medium.
The wali%are s-imu.?aki?by tjie & method of placing images
at appropriate distancea above and below the wing. An im-
portunt rwdi dwwn i8 thd, for certain conditions of wing
freque~, tunnd height, and Mach wumber, the tunnel and
wing mayform 0 re80nanisystem 80 thd theforce8on them“i.g
are greatly chungedfrom the dition of no tunnel &. It
is pm”mkdout that timdur conditti txvidfor threedimerwimal
jlowin cimulur and rechmgdar tunnek and apparently, within
certain Mach number range8, in tun?wh of nonuniform cro88
8ectwn or eoen in open tunn.eh or jeti.

INTRODUCTION

The understanding of flutter and other nonsteady phe-
nomena requires n knowledge of the associated unsteady flow. -
In the underlying theories of unsteady flow, such assumptions
as small displacements, linearization, and an inviskid fluid
am made in order to obtain workable and usable results.
When it is necewary to investigate the effect of these assumpt-
ions on analytical results by meaaimements of the forces
and momcmts on an oscillating wing in a wind tunnel or to
treat cases that do not conform to theory, the question of the
effect of the tunnel walls naturally arises. In the case of
steady flow the problem of the effect of tunnel walls is more
or less classic and has been treated by many investigators.
In general, these investigators have been able to obtain
relatively simple factors which can be used to modify
measurements of the air forces on a wing in a tunnel to cor-
respond to free-air conditions. The extemion of the r~ults
to compressible flow presents no diflicukies since the redts
for incompressible flow can be corrected according to Prandtl-
Glauert correction factors.

in the case of unsteady flow, Reissner, reference 1, and
W. P, Jones, reference 2, have published papers showing the
effect of wind-tunnel walls for the incompressible case. In
both papers, the influence of the tunnel walls is found to be
compmatively small for most cases, although indications are
given that, for some ranges of a reduced-frequency param-
eter, the effect may be quite large. In the unsteady case,
unlike the steady case, the transition from results for incom-
pressible flow to those for compressible flow cannot be accom-
plished by simple transformations. This diflkulty is a result

of the fact that, in an incompressible fluid, the velocity of
propagation of a disturbance is infinite &ndno time lag occurs
between the initiation of a disturbance and its eifect at
another position in the field, but, in a compressible fluid, a
definite time is required for a signal to reach a distant field
point so that botb a phase lag and a change in maggtude
result. Under certain conditions this phase lag can result in
a resonant condition which would involve large corrections.

The purpose of this report is to consider the effect of wind-
tunnel walls on the forces on an oscillating airfoil of infinite
sprk with considerations of the compressibility of the fluid.
The usual method of images is employed in order to satisfi
the condition of no normal velocity at the tunnel walls.
First, ~the effect of tunnel walls on the induced vertical
velocity, hereinafter ‘referred to as dowmvash, of an. oscil-
lating doublet is determined and this result is used to for-
mulate the integral equation for the dowmvash of an oscil-
lating airfoil ii a tunnel. This report is not intended to
give numerical values or any detailed calculations of final
tunnel-wall correction factors but mainly to show the exist-
ing need for such calculations and to present equations for
calculatingcorrections for the two-dirntulgixlal case.
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ANALYSIS

EFFECT OF TUNNEL W’ALISON THE DOWNWASH OF A SINGLEDOUELET

The differential equation that governs flow due to small
nonsteady perturbations imposed on a steady, uniform
flow field is the wave equation. Referred to rectangulm
coordinates, fixed relative to the undisturbed stream at
infinity, this equation k

b’g a’+ 2iJk1afo
(1–w) ~+~–~ ~t–+ :!=0 (1)

In thisequation the independent variable x may be regarded
as either a perturbation velocity potential or as an accelera-
tion potential. In treating the boundary conditions of the
second section of & analysis it is convenient to regard 4
as an acceleration potential. Thus, in order to be con-
sistent, x is hereinafter regarded as an acceleration potential.
Accor&gly # is &rec& proportional
pressure field and is tierefore related
velocity potential p as follows:

#=g+v ~

to a perkrbation
to a perturbation

(2)

where HO@land HI’) are Hankel functions as ddned in
reference 3; A is an arbitrary constant denoting doublet
strength, ~ is circular frequency, and ~=~~~. The
Hankel function H,@) in equation (6) becomes infinits

( )“& as its argument approached zero. Otherwise

121@Jis continuous and approaches zero as its argument
approaches iniiu.ity. Thus tie only discontinuity in tiOis at
the location of the doublet, that is, at (z=O, y= O).

In the presence of plane tunnel walls located parallel to the
z-axis at 22/2 units above and H/2 units below the doublot,
position, the potential x of a pressure doublet moy be repre-
sented by we potentiaI of an infinite system of appropriately
chosen reflecting doubleti, namely (see fig. 1)

(-)i“ t “

#= Aarie 0 $fl~m(– U“ZLom[;, @+/%/-nH)Z]

(7)

~ this equation the term corresponding to n=O is the poten- -
tiaI +., equation (6), discussed in the preceding paragraph.

It maybe noted that only this term of the infinite summation
j in equation (7) give9 rise to a discontinuity in* at any point

In order to calculate the dowmvruihw=% associated with

*, it is necemary to solve equation (2) for-q in terms of *.
When t and p are sinusoidal fumtions of time, such that

*(z, y,t)= e’~tr(z, y) -

1 (3)
w(x, y,t)= ei% (z, ~)

equation (2) becomes independent of time and thus reduces
to an equation with one independent variable, namely

(4)

This equation can be integrated with respe& to x to give

(5)

where the lower limit of in-iegration is chosen for later mn-
venience so that p va.nkk far ahead of the point of dis-
turbance. The down-wash may be readily calculated with
the use of this, equation. In the absence of tunnel widls
the retarded potential XO(that is, the potential corresponding
to outgoing wavea) of a harmonicdy puIsating pressure
doublet located, for simplicity, at (O, O) that sati&es equation
(1) is .

within the tunnel
,( )

. The in-–; SYS;V “<x<”

tity of terms corresponding to n#O is nece&ry to cause
the dowmvaah w to vanish at aII points of the tunnel walls,
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FIGURE l.-sketoh showing reflecting systam of doublets simulating

two-dimensional tunnel walk.
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The downwash along the midsection of the tunnel y=O is given by

where

represents the downwash associated ~th the pressure doublet in the absence of tunnel walls and

995

(8)

(9)

(1o)

represents ‘the additional downwash due to the presence of tunnel walls. Thus the relative value of ~ as compared
with WO+JW1iEthe main item of interest here.

The integrals appearing in equations (9) and (10) can be reduced to simpler form for evaluation but since the steps
required to reduce one of the integrals are the same as required to reduce the other, only the integral appearing in
equation (9) will be treated in detail. The reduced form of the other integral can then be obtained by simple comparison.
The Hmkel function in equation (9) satisfies the following identity:

(11)

Substituting this relation into equation (9) gives

In equation (12) the first integral can be titegrated twice by parts to give for W.

By writing the integral in equation (13) as the sum of two integrals, namely

S:.:s:.+f (14)

and mdcing a change of variable

(15)

the expression for WOmay be further reduced to .

~ “2J5=$”[+WTI’4 (16)

In the limit y=O the expression in bracea in equation (16) reduces to the kernel of F’ossio’s integgal equation relating
pressure and downwash for the oscillating airfoil in compressible flow. (This result checks the remdts for thi9 expres-
sion given, for example, in ref. 4.)
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The value of the integrals in equatim (10) may be sim.ihwilyreduced to give

(17)

In general, this in&ite-serie9 representation of wl, equation (17), converges to a tite value. However, for cmtain
critical values of the frequency parameter &/V, it is found that the value of WI becomes in6nite. This fact can be
readily made evident by use of relations given in reference 5 where it is shown that an irdinite series of Hankel functions of
the type appearing in equation (17) can be replaced by an equivalent series of exponential functions as follows:

“=-%’%%%)+$;’S+.—
7LTV

If relation (1S) is substituted into equation (17) the value of WIbecomes

– a(-e%(-l)n(l+%:)Hom[+~l+%{-:’og(l+’P)+
2ATU e{v(,-;)= m

“= v’

‘[tiJ(%y-tGy+%+d(2.+1)’(%y-
ipz(— 1)’J=ei”w[%mm’”) (1 !3)

It may be seen that this expression becomes infinite for all
values of z when the frequency parameter oH/V has any of
the vrduesgiven by

$=(2m_1)~ (m=l,2,3, ...) (20)

These critical values of the frequency parameter correspond
to a condition of pure resonance in the tunnel which in the
present case implies that a harmonic disturbance of any
finite amplitude
amplitude.

may lead to a dowmvash of iniinite I

Of course these infinite values of WIwould never be nmlized
un”derpracticable conditions bemuse factors such as iinito
tunnel length, absorption through walls, fluid viscosity, and
so forth that would give rise to damping would make pure
resonance unobtainable; however, with damping present,
resonant frequencies yielding values of uH/V in the neighbor-
hood of those given in equation (2o) would e..ist and it is not
likely that quantitative agreement or even possibly qualh-
tive agreement between calculated and measured downwash
(or forces) can be realized when the value of uH/V is in tho
neighborhood of these critical values.

.



DFFDCI’ OF WIND —’rUNNELTVAJJISON OSCILLATING AIR FORCES FOR TWO-Dll@3NSIONAL COMPRESSIBLE FLOW 997

It is interesting to note that-the effect of bounda~ condi-
tions such as section geometry, tunnel-waUflexibility, and so
forth is to change the value of the critical frequency but not
to do away with the possibility of resomume. Also, by treat-
mcmtssimilar to those employed herein, it can be shown that
under idealized conditions resonance can occur in three-
dimcnsionrd flow in both round ruid rectangular tunnels or
apparently, within certain Mach number ranges, in tunnels
of nonuniform cross section (expanding or contracting sec-
tion) or even in open tunnels or jet9.

The fundamenttd or smallest critical values of coH/V,cor-
respondirqgto m= 1 in equation (20), are shown plotted as
functions of Mach number M in figure 2. This figure indi-
cutes that them is no finite critical value of oH/V for the con-
ditions M= O, V# O, and c= OY,-which correspond to a flow
of incompre~ible fl’tid in the”
with those found in references 1

The frequency parameter

tunnel. This result agreea
and 2.

(m=l,2,3, . . .) (21)
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FIGURE2.—Fundamental critical values of frequency parameter uH/v
dotted as a function of Mach number hf.

which may be derived from equation (20) is shown plotted,
for m= 1, as a function of Mach number in figure 3. Equa-
tions (2I.) and iigure 3 show that finite values of the critical
frequency exist for the conditions M=O, V=O, and c# ~.
These conditions correspond to a compressible fluid at zero
velocity in the tunnel. For these conditions equations (21)
and the corresponding wave lengths

A=~=& (rn=l,2,3, . . .) (22)
W

agree, respectively, with iesults found in the literature for
the characteristic frequencies and wave lengths associated
with trmsvmae acoustic vibrations in rectangular chambem
when the location of the source of disturbance is excluded w
a nodal point. See, for example, referenoe 6.

It may be of interest k note that equation (21) can be
derived from the principle of standing waves as follows: The
condition for resonance for the type of disturbance considered
implies that the standing transverse wrwes have a maximum
velocity at the midsection of the tunnel and zero velocity at

3.2 - ?

2.8 \

\

2.4

.
i

2.0

\

“+ 1.6

I.2 \

.8 \

.4

0 .2 .4 .6 .8 1.0
M

FIGURE 3.—Fundamental critical values of frequency parameter WHIC
plotted aa a funotion of Mach number hf.
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the boundaries. A half-sine wave of wave length A=2H or any odd divisor of this length, namely, A== satisfiee

this condition. If c is the velocity of sound in the medium and V the velocity of the medium, the velocity of propagation of
a disturbance in a iixed plane perpendicular to the air flow is~=z. Since the frequency is given by the speed of
propagation divided by the wave length there is obtained

or

::= @(27n— 1)

INTEGFML EQUATION FOB AN AIRFOILOF INFINITEASPECT lZATIOOSCILLATINGIN A WIND TUNNEL

In order to present equations from which tu.mei-mdl corrections for two-dimensional flow can be calculated, um
is made of the foregoing analysis to derive the integral equation, relating dowmvash distributions and lift clistribu-
tions, for the effect of tupnel ml.ls on the lift distribution associated with a given dowmvash distribution.

The resultant pressure or local lift Ap associated with the acceleration potential of a single doublet located at (%,0)
with strength depending on streamwise position r~ may be, expressed simply as (compare with eq. (6)):

Ap=—2p ~ +[~o,(~—~o),~, t]

(23)

where A.(G) denotes 10MJ doublet strength or lift density. The dowmvash due to a distribution of such doublets between
%=—b and %=6 is

‘(24)

For a given value of the lift density A(%), this equation determines the downwash. For a given or prescribed exq)ression
of u@), the distribution of lift density must be determined. Thus, in this case, equation (24)isa foizn of Possio’s intogml
equation relating dowimwsh and ~ressure for an airfoil oscillating in compressible flow. In passing it may be well to point
out that Possio’s equation haa not yet been solved in closed form but has been evaluated by different methods of
approximation by several authors. Reference 4 gives a r6sum6 of these methods of approximation.

For an airfoil inside a two-dimensional tunnel the relation between dowmvash and local lift becomes (compare with

(26)

For a given value of lift density A(zJ, this equation deter-
mines the effect of tunnel walls on the cmmsponding down-
wash. For a given dowmvash distribution, the more
pertinent effect of tunnel walls on the distribution of lift
density is obtained by comparing the solution of equation
(24) with the solution of equation (25). ti either case the
summation in the second integral in brac~ in equation (25)
is the same summation that was found in the preceding
section to have critical valuea of the frequency parameter
dZ/V thatcause the summation to become infinite. Conse-
quently, evaluations of equation (25) for values of the
frequency parameter in the neighborhood of these critical
values would lead to the same rexmant eiTectsfound in the
treatment of a single doublet. Otherwise, for values of the
frequency parameter not too near critical values, it is

proposed that a fairly close approximation to solutions of
equations (24) and (26) for effects of tunnel wrd.lson lift
density (or lift) will generally yield results from which
b.mnel-w-allcorrection factors for two-dimensional flow can
be obtained. Expressions from which correction factors for
three-dimensional flow can be obtained may be similarly
derived when the dowmvash of a three-dimensional pressure
doublet is employed instead of the dowmvaah of a two-
dimensional pr~ure doublet.

It appmm dwrable to solve equations (24) and (25) by
collocation or some other approximate method to obtain
tunnel-wall corrections for some particular ca.w of pre-
scribed down-wash and to determine experimentally the
range, if any, of frequency parameter in which’ quantitative
remits can be obtained for’these casea.

*
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CONCLUDING REMARKS

The important result shown is that, in a tunnel of infinite
length containing a flowing fluid, a resonant condition
involving a transverse oscillation of the fluid across the
tunnel is possible and measured air forces at or near this
condition of resonance might be greatly modified from those
measured in free air. This resonant condition is a (simple)
function of Mach number, tunnel height, and wing frequency
find brings to attention a new type of tunnel-wall interference.
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